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State of Research: Environmental
Pathways and Food Chain Transfer
by Burton E. Vaughan*

Data on the chemistry of biologically active components of petroleum, synthetic fuel
oils, certain metal elements and pesticides provide valuable generic information needed
for predicting the long-term fate of buried waste constituents and their likelihood of
entering food chains. Components of such complex mixtures partition between solid and
solution phases, influencing their mobility, volatility and susceptibility to microbial
transformation. Estimating health hazards from indirect exposures to organic chemicals
involves an ecosystem's approach to understanding the unique behavior of complex
mixtures. Metabolism by microbial organisms fundamentally alters these complex mix-
tures as they move through food chains. Pathway modeling of organic chemicals must
consider the nature and magnitude of food chain transfers to predict biological risk
where metabolites may become more toxic than the parent compound. To obtain predic-
tions, major areas are identified where data aicquisition is essential to extend our
radiological modeling experience to the field of organic chemical contamination.

Introduction
The indirect hazards of energy-related products

to humans may result from long-term fate and
distribution of many organic compounds in ter-
restrial and aquatic ecosystems. Contamination
reaching people through environmental path-
ways involves many different organisms (food
chains) and chemical processes of a peculiarly
environmental kind that need to be better under-
stood. The chemical processes include metabolism
in lower life forms, abiotic (geochemical) transfor-
mations, and microbial conversions any of which
may produce more or less hazardous chemical
forms. This review considers the state of the re-
search on metabolism, how it relates to food chain
and environmental transfer processes, and the
modeling ofpathways involved in these processes.

Polycyclic organic matter (POM) is a type of
energy residual from pyrolytic, combustion and
other fossil fueled energy sources, which has been
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found widely distributed in water, soil, air, plant
tissues, and animal tissues (1). As discussed
herein, recent research on complex mixtures con-
taining POM indicate that their POM content,
per se, may not be harmful to humans. Rather,
specific polycyclic hydrocarbon compounds con-
tained in the POM mixtures may accumulate
with differing degrees of toxicity depending on
the situation.
Petroleum, waste oils, shale oil and coal liquids

show substantial differences in regard to the po-
tential carcinogenic activity of POMs contained
therein, as judged by mutagenicity (2,3). Also,
levels at which mutagenic activity can be demon-
strated are well below chronic or acute toxicity
levels (4). In considering indirect hazards to hu-
mans, data on mutagenic activity are probably
more important than data on acute toxicity. In
considering ecological effects, or the well-being of
ecosystems, chronic toxicity data cannot be ig-
nored (5), but that is not within the scope of this
review.

It is not possible to study all of the organic
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products generated by various fossil energy tech-
nologies, and for this reason representative com-
pounds of chemicals need to be selected for in-
depth studies. These organic products constitute
complex mixtures with unique properties that
present problems in measuring and predicting
biological effects. The greatest challenge of the
next decade will be to establish the principal
features of the interactions ofthe chemically com-
plex mixtures with organisms and their abiotic
environment. Ib reach a general understanding
on these interaction features will probably be as
complex an undertaking as was our approach to
radiation biology 80 years ago.
Our radiological experience is valuable in try-

ing to inter-relate a complicated pattern of differ-
ent chemicals, different organisms, and different
environmental processes. The sheer complexity
makes a formidable task ofstudying and trying to
describe the result of indirect human exposure to
chemicals through environmental pathways that
include food chains. Fifteen years of research on
polycyclic aromatic hydrocarbons (PAH) have
provided a strong head start in understanding
biological uptake and retention of at least one
class of organic compounds (4). Intensive work
undertaken over the past five years on coal-liq-
uids has provided some further insights particu-
larly on the characteristics and environmental
behavior of other complex mixtures (5,6). How-
ever, overall, there are many gaps to be filled in
the data base before models can confidently pre-
dict food chain hazards from the more toxic com-
plex mixtures like coal liquids (7).
This review is not intended to be comprehen-

sive in any one area. Rather, it is written to
illustrate key points relative to food chain trans-
fers and waste residuals; and, to spotlight major
areas of uncertainty requiring research. A vari-
ety of polycyclic hydrocarbon compounds will be
discussed. (Fig. 1).

Modeling Perspective
The experience with radiological models used

in estimating indirect exposures has been devel-
oped over a long period of time, and it has led to a
well-defined conceptual approach needed to deal
with the various environmental processes and
pathways (9). Problems in applying such models
to a chemical contamination situation have been
reviewed elsewhere (10,11), and recent attempts
have been made to apply radiological modeling to
organic chemical contaminants (12). At the
present time, such an approach is only limitedly
useful. But it can be used to determine whether
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FIGURE 1. Schematic drawing of compounds discussed in text.
Derivative compounds may be found in Weast and Astle
(8).

adequate data bases exist, in situations where the
number of pathways and "sinks," i.e., where a
compound can be accumulated, are too numerous
to track (Fig. 2). The model helps us answer such
questions as: Do we have at hand any source
(emission) data? Is the source a particulate or gas
or both? Do we have hydrologic and atmospheric
dispersal data? Do we have sorption or microbial
conversion data for soil or sediment? We must
look at the entire ecosystem in considering expo-
sure situations involving food chains, and a sig-
nificant aspect in developing the data bases is
acquiring information on key environmental
processes affecting entry or subsequent transfor-
mation of the chemicals in question.
The radiological modeling approach taught us

to get systematic physical and chemical data on
source "terms" and critical pathways. Source
terms include particle size (airborne), physical
state, chemical form, simultaneous presence of
complexing agents or solubilizers, and release
rates. A field contamination situation involves
the transfer of pollutant from soil to plant to
herbivore, which makes it a critical pathway to
people. The source terms fundamentally control
biological availability at the plant leaf, root or
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FIGURE 2. Modeling contaminant transfers from the environment to man-a conceptual
framework based on radiological experience. The model shows major compartments,
various biotic and abiotic processes of transfer between compartments, and four major
submodels on which the computer codes are based. Illustrated is a critical pathway for
transfer from air to plant to man. In the pathway shown, e.g., by boldface arrows,
substantial problems arise in application to organic compounds (see text). Based on
Vaughan et al. (9).

soil interface; failure to take them into account
can change uptake determinations by several or-
ders of magnitude (9). In the chain of a critical
pathway, metabolism by a food chain element can
significantly alter contaminant uptake at subse-
quent steps. Only a few data are available on the
chemical form taken up and transferred between
trophic levels or between soil and plant. Such
data are scarce even for those elements where
chemical change is known to be important
(13,14). PAH compounds have been better studied
but data on metabolites besides those discussed in
this report are not plentiful. The greater concern
over metabolites is now clearly recognized, how-
ever (1,15). Microbial metabolism of PAH in pe-
troleum fractions has been rather well reviewed
(16-18), but the extent to which soil or sediment
metabolites would impact food chains is not clear.

Developing Chemical Exposure
Models
The best known and most widely utilized expo-

sure model derives from radiological experience.
Current topics of concern for the radiological
model are shown in Table 1 and have been treated
fully elsewhere (9). Other features need to be
considered in developing chemical exposure data
bases that might ultimately be useful for model-
ing purposes. Source factors and passive trans-
port processes remain equally important for ra-
diological and chemical models. However,
mobilization and uptake, and biological availabil-
ity, are in some cases complicated by metabolism
and the unique properties of complex mixtures.
Uptake and possibly metabolism can be

markedly altered by processes that occur upon
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Table 1. Comparing information data bases.

Radiological type models Organic chemical type models
Source factors Source factors
Dispersal mechanisms Dispersal mechanisms
(hydrological, atmospheric)

Complex mixture behavior
Mobilization and uptake Mobilization and uptake

Metabolism
Critical (environmental) pathways Critical (environmental) pathways
Estimation error Estimation error

deposition. Atmospheric particulate sorption may
be the most significant process for hydrocarbon
contamination from airborne sources (19) as it is
for radioelement contamination (20). Complex
mixtures at the source often introduce further
complications that are not recognized in radiolog-
ical modeling.

Mobilization and uptake depend on transport
mechanisms at the cellular level, and these mech-
anisms have not been well studied for complex
ring-type compounds. Specific compounds or their
metabolites generally require an enzyme-medi-
ated step for uptake. Subsequently, they may be
accumulated by the organism inadvertently,
either blocking normal metabolic activity, as hap-
pens with certain pesticides (21), or enhancing
biochemical activity that has high likelihood of
causing injury, as discussed below. Mobilization
and uptake mechanisms are not well character-
ized as to the specific chemical forms they accept.
Also, the organic chemical forms that would mod-
ify metabolism or accumulation have not been
systematically studied.
Radioelement exposure models generally as-

sume that an element moves through environ-
mental pathways largely unaffected by metabo-
lism. This has been always a questionable
assumption, with the consequence that in soil
systems involving green plant, gross error ranges
from 1 to 1O-3 for soil to plant transfer ratios can
be found. The single most important model seg-
ment affecting these large errors has been the soil
submodel, for both radioelements (9) and metals
(22). The focus on delineating soil processes that
control biological availability ofnonnutrient com-
pounds like certain radioelements is relatively
recent (23-25). Data on microbial degradation of
organic compounds are plentiful but have not yet
been brought to a sharp focus as regards control-
ling variables (16,18,26,27).

Persistence holds the key to appropriate expo-
sure models for chemical contaminants. A persist-
ent compound is likely to move through several
links ofa food chain system and possibly accumu-
late at the topmost levels (biomagnify). In ani-

FIGURE 3. Typical aquatic pathways exposure model. The
model assumes steady state dynamic equilibrium with
small losses from the system and makeup from the source.
For many organic compounds, metabolites may not leave
the system and (microbial) degradation is likely to be
partial leading to accumulations ofother metabolites. Haz-
ard evaluation must incorporate a consideration ofmetabo-
lites potentially more toxic than the parent compound.
From Aaberg et al. (31).

mals, this usually happens when the enzyme sys-
tems are lacking to efficiently metabolize a
particular organic compound, such that it accu-
mulates in fatty tissue, like hexachlorobenzene
(28). In these instances, solubilization will deter-
mine uptake, but as discussed below, solubiliza-
tion in complex mixtures usually depends on sev-
eral processes, e.g., partitioning, hydrotropy,
emulsification, in addition to chemical solubility.
Alternatively, in plants-and less typically in
animals-accumulation in a particular organ
may depend on ligand formation that is in turn
dependent on the bonding characteristics of a
particular element, like cadmium (29). Activity
in other compounds, like PAH, will be related to
overall molecular configuration rather than to
the bonding characteristics of a particular ele-
ment within the molecule and the activity is
likely to be significantly altered by the fate of
metabolic conversion products. Between these ex-
tremes, there lies a distribution of chemical com-
pound behaviors.

Assumptions of a modified steady-state dy-
namic system are implicit in current chemical
modeling attempts (30,31) as shown in Figure 3.
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Associated with such models are efforts to sys-
tematize bioconcentration factors (BCFs) for a
wide variety of compounds based on octanol-wa-
ter partitioning coefficients (32,33). For chemicals
that are being transported and redistributed be-
tween solid, liquid and gas phases, including bi-
ota, the steady-state approach may be of interest;
however, it does ignore metabolism, and present
model development is heavily weighted toward
chlorinated and other hydrocarbon classes of low
metabolizability that persist in fatty tissue
(34,35). With the present unsettled state of the
art, it would seem unwise to force most data
acquisition and its parameterization according to
the implicit assumptions of steady-state kinetic
models. This is particularly true because metabo-
lism and transformation reactions are not well
understood and cannot be explicitly factored into
such models.

Abiotic Eransformation Reactions
Atmospheric and hydrological dispersal some-

times are looked upon as passive physical proc-
esses; however, such processes are subject to
chemical modification through transformation re-
actions. These reactions have not received the
attention they need for chemical modelling pur-
poses, and they may also affect metabolism. Efflu-
ent materials frequently are altered chemically
through abiotic reactions, which can be caused by
elevated temperature and/or free radicals present

in atmospheric plumes, by salinity or other
changes in hydrologic plumes, or by geochemistry
in soil systems. Other factors that may alter
chemicals include photooxidation, volatilization
and various particle physicochemical or geochem-
ical transformations (17,36). In actual soil sys-
tems, geochemical processes are often inextrica-
bly bound up with microbial metabolism (37). It
may be important to delineate the truly geochem-
ical processes, but this has not yet been fully
accomplished in soil systems.
Most atmospheric PAH compounds are asso-

ciated with particulate surfaces (1), but the reac-
tions of surface-associated molecules are only be-
ginning to be investigated (Fig. 4). For example,
certain PAH sorbed to fly ash particles were
found to be stabilized against photochemically
induced decomposition; the compounds included
benzo(a)pyrene, methylbenzanthracene, acridine,
fluoranthene and phenanthrene (40). Others were
found, in the same study, spontaneously to decom-
pose when sorbed to the fly ash; these compounds
generally contained a benzylic nucleus, like fluo-
rene, benzofluorene, or azafluorene. Quinones and
ketones resulted from decomposition.

Evidently, particle sorption of PAH takes place
after fly ash escapes the stack, such that air
concentrations of particulate PAH will be grossly
underestimated by stack sampling (19). Atmo-
spheric gases like NO2 can produce compounds
with increased or perhaps previously unobserved
mutagenic activity. For example, NO2 at from 1 to
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FIGURE 4. Plant uptake of polyaromatic hydrocarbons (PAH). Most atmospheric PAH are
sorbed to particles less than 2 jim in size, where they may be stabilized and/or nitrosated.
Foliar uptake often greatly exceeds root uptake from soil. PCB sorbs to leaves by
volatilization from soil with little or no root absorption. Based on Fries and Marrow (38),
Lewtas et al. (39) and Cataldo and Vaughan (20).
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100 ppm caused formation of the more mutagenic
nitro derivatives of benzo(a)pyrene and perylene
sorbed to fly ash (41,42). S02 tests were ambigu-
ous.
The importance ofthese observations for people

exposed to pathways involving green plants can-
not be overlooked. There seem to be no compara-
ble data on organic compounds other than the
PAH.
Somewhat analogous events are known to occur

in water columns, particularly affecting materi-
als sorbed to suspended particulates, and they
have been reviewed elsewhere (17); examples
cited include photooxidation, sorption on mineral
colloids and oil droplets, and other surface-active
factors. The likelihood of these events points to a
serious obstacle in extrapolating from a labora-
tory observation to a field prediction.

Volatilization
Volatilization is a complicating factor, from the

standpont of environmental pathway modeling,
which may bias estimations of the transfer of
pollutant from sediment to detrital organism, or
from soil to plant root (see Fig. 4). Lower molecu-
lar weight PAH and some chlorinated hydrocar-
bons have an appreciable vapor pressure (4,43),
which suggests that their volatility in solution
may be as significant as their volatility in air.
How important this factor may be in biasing the
entry of such compounds into the pathways
shown in Figure 2 is not easy to ascertain. It
appears to be an important factor in terrestrial
plant uptake from soil surfaces (44), but it is
probably of minor importance in detrital orga-
nism uptake from benthic sediments contami-
nated by accidental spills. However, volatility
may greatly alter the distribution of compounds
that organisms may be exposed to in surface spills
of petroleum (17) or other products.

Features of Complex Mixtures
Petroleum typifies the measurement problem

in dealing with mixtures of many hundred thou-
sands of organic compounds, each of which shows
different solubility, oil-water partitioning, parti-
cle-water partitioning, emulsifying, toxicological
and other properties (4). Coal synthetic fuels,
shale oil, and the organic fraction of industrial
wastewaters or raw river water present similar
problems (45-49). Practicable approaches to mea-
surement focus on solubility, octanol-water parti-
tioning, and, particularly, on determining expo-
sure spectrum, based on the measurement of
reference compounds.

During an interval of exposure to a complex
mixture, particularly in an environmental situa-
tion, an organism experiences a continually shift-
ing spectrum of individual compounds (Fig. 5).
This has been demonstrated with petroleum and
coal synthetic oils (5,50-52), where fairly elabo-
rate procedures have had to be developed to as-
sure consistently reproducible responses; the pro-
cedures required periodic determinations of the
concentrations of the desired reference com-
pounds. In determinations of how an organism
handles a particular compound metabolically, in
the presence of a complex mixture, the experi-
ment can be easily confounded if opportunities
exist either for partitioning or for blocking.
Hence, for either predictive purposes or for con-
trol of experimental procedures, it is essential to
chemically validate the exposure conditions. Cur-
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FIGURE 5. Successive extractions of a water soluble fraction of
coal liquid represent the time course of partitioning of a
mixture of individual phenols and other compounds. In
nature, fish swimming through a contaminated zone will
be exposed to a continually shifting spectrum ofcompounds
represented by these phenolic compounds of varying mo-
lecular weight. Based on Strand and Vaughan (5).
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rent development in chemical fractionation and
GC-MS methods make validation practicable.

Solubilization
Solubilization for chemical modeling of food

chains refers to more than chemically defined
solubility. In complex mixtures, other processes
that need to be considered are emulsification,
hydrotropy and partitioning on suspended solids.
Any of these processes may effectively bring ma-
terials into contact with the uptake surfaces of
biota. Natural and waste waters often contain
significant amounts of other dissolved and colloi-
dal organic materials capable of incorporating
oily compounds into the micelles of surface active
molecular aggregates (4); humic acids, fulvic ac-
ids and other common plant biodegradation prod-
ucts provide good examples of such solubilizers
(17). Hydrotropy is the enhanced solubility of
organic compounds in the presence of other or-
ganic compounds that are not themselves colloi-
dal (4).

Partitioning
Fairly extensive literature exists on aqueous

solubility and octanol-water partitioning of nu-
merous organic compounds (4,17,33,53,54). Octa-
nol partitioning gives an estimate of the potential
for accumulation in lipids, and it generally corre-
lates well with the relatively simple bioconcen-
tration test using daphnids (tissue concentration/
water concentration). However, as compared to
the daphnid test, the same approach in fish has
been found greatly to over estimate bioconcentra-
tion of azaarenes (55), because fish rapidly metab-
olize this particular organic compound class.
Thus, only experimental measurement can estab-
lish the actual degree of bioconcentration (or
biomagnification through higher trophic levels.)

If metabolism of one compound in an organism
is known, partitioning data may be useful for
comparative estimation of fat accumulation
among several similar compounds. For example,
the progressive addition of from one to three
methyl groups to naphthalene decreased its solu-
bility in water by an order of magnitude (56), and
an increase in molecular weight (MW) among
similar azaarenes (benzacridine, quinoline and
isoquinoline) caused a proportional decrease in
solubility and increase in fat accumulation (55).
Sulfur or nitrogen heterocycle analogs of PAH
such as anthracene or benzanthracene show in-
creased polarity and, as a consequence, possibly
greater water solubility (57,58). However, it is not
clear that these heterocycles follow similar meta-

bolic pathways, so they should not be compared to
PAH based on partitioning data alone.

In soil systems, as compared to aquatic sys-
tems, much less information is available. Parti-
tioning between the soil water and the solid frac-
tion is known (59), and it is highly correlated with
the soil organic fraction in both soils and sedi-
ments (4,60). An active microfloral metabolism is
characteristic of most soils and sediments (1 7,27).
For similar reasons the utility of partitioning
data may be no more or less in soil systems than it
seems to be for aquatic systems.

Blocking and Synergism
Probably with most complex mixtures, as with

coal liquids, toxic activities (including genotoxic
activity) of constituent compounds are not simply
additive. From a modeling point of view, this
feature is quite unlike radiation or heavy metal
accumulation. In complex mixtures from coal liq-
uids, both significant blocking and synergistic
activities have been found recently (61,62). Also,
the mutagenicity of pure benzo(a)pyrene (BAP)
can be progressively inhibited by adding back
incremental portions of crude fraction of coal liq-
uid, based on the Ames assay (Fig. 6). When the
data are corrected for fractional weight in the
crude mixture, comparable results can be demon-
strated on distillate cuts of coal liquids in the
700-800TF boiling point range. An entirely differ-
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FIGURE 6. Blocking and synergism. When crude fractions are
added back to benzo(a)pyrene (BAP), its mutagenic action
is progressively suppressed. Distillate fractions below 850°
F showed similar findings. The distillate fractions are
enriched in nitrogen containing polyaromatic compounds
(N-PAC). Mutagenic activity of a highly purified N-PAC
fraction was doubled when a nonmutagenic PAH fraction
was added back (data are corrected for weight fraction and
portrayed at 1/10 of the ordinate). Synergism was seen
similarly for distillate cuts above 850°F. Data taken from
Later et al. (63,64).
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ent result occurs above 850°F; the distillate cuts
contain high proportions of nitrogen containing
polyaromatic compounds (N-PAC) that are more
highly mutagenic than BAP. When crudes are
added back to these particular fractions, their
mutagenic activity is nearly tripled, rather than
blocked. This striking synergism also has been
confirmed with highly purified N-PAC fractions
activated by otherwise inactive PAH fractions. In
determining toxic response oforganisms, it there-
fore becomes essential to couple specific com-

pound testing with chemical fractionation and
testing of the mixture, not only for determining
mutagenic activity but also for determining other
types of biological activity.

Significant blocking and synergistic activities
have also been detected in complex mixtures from
shale oil (65, 66). Raw shale oil, like coal liquids,
differs from most crude petroleums in having
comparatively high concentrations ofbasic (nitro-
gen-containing) and phenolic compounds that are
not present in petroleum oils.

Table 2. Risk assessment units proposed for complex mixtures.a

Category
Carbon monoxide
Sulfur oxides
Nitrogen oxides
Acid gases
Alkaline gases
Hydrocarbon gases

Formaldehyde
Volatile organochlorines
Volatile carboxylic acids
Volatile O&S heterocyclics
Volatile N heterocyclics
Benzene
Aliphatic/alcyclic

Mono/diaromatic hydrocarbons
(excluding benzene)
Polycyclic aromatic hydrocarbons
Aliphatic amines (excluding
N-heterocyclics)
Aromatic amines (excluding
N-heterocyclics)
Alkaline nitrogen heterocyclics
["azaarenes"] (excluding "volatiles")
Neutral N, 0, S heterocyclics
(excluding "volatiles")
Carboxylic acids (excluding
"volatiles")
Phenols
Aldehydes and ketones ["carbonyls"]
(excluding formaldehyde)
Nonheterocyclic organo sulfur
Alcohols
Nitroaromatics
Esters
Amides
Nitriles
Tars
Respirable particles
Arsenic
Mercury
Nickel
Cadmium
Lead
Other trace elements
Radioactive materials
Other remaining materials

Description
CO

SOx
H20, HCN
NH3
Methane through butanes, acetylene, ethene through butenes; C1-C4
alkanes, alkenes, alkynes and cyclo compounds; bp <-20°C
CHO
Tb bp -120°C; CH2Cl2, CHC13, CCl4
Tb bp -120°C; formic and acetic acids only

bp -120°C; furan, THF, thiophene
Tb bp -150°C; pyridine, piperidine, pyrrolidine, alkyl pyridines
Benzene
C5 (bp -40°C) and greater; paraffins, olefins, cyclocompounds,
terpenoids, waxes, hydroaromatics
Ibluene, xylenes, naphthalenes, biphenyls, alkyl derivatives

Three rings and greater; anthracene, BaA, BaP, alkyl derivatives
Primary, secondary and tertiary nonheterocyclic nitrogen, MeNH2,
DiMeNH, TriMeN
Anilines, naphthylamines, amino pyrenes; nonheterocyclic nitrogen

Quinolines, acridines, benzacridines; excluding pyridines

Indoles, carbazoles, benzofurans, dibenzothiophenes

Butyric, benzoic, phthalic, stearic

Phenol, cresols, catechol, resorcinol
Acetaldehyde, acrolein, acetone, benzaldehyde

Mercaptans, sulfides, disulfides, thiophenols, CS2
Methanol, ethanol
Nitrobenzenes, nitropyrenes
Acetates, phthalates, formates
Acetamide, formamide, benzamides
Acrylonitrile, acetonitrile

As, all forms
Hg, all forms
Ni, all forms
Cd, all forms
Pb, all forms

Ra-226

aBased on Moghissi and Foley (45); Moghissi, personal communication.

Number
1
2
3
4
5
6

7
8
9
10
11
12
13

14

15
16

17

18

19

20

21
22

23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
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Criteria for Reference Compound
Selection
Given the extraordinary number of individual

compounds in complex mixtures here being dis-
cussed, their widely differing biological activities,
and rather limited data, a selection of reference
compounds for intensive study affords the only
practicable way to commence developing a useful
data base. EPA is developing a list of risk assess-
ment units (Table 2) which attempts to classify
compounds for this purpose (45).
This concept is likely to be refined by EPA

because recent research findings reveal addi-
tional problems (A. Moghissi, personal communi-
cation). For example, benzo(a)pyrene, in group 15
(Table 2) was selected originally because of its
potential carcinogenicity when administered as a
single compound. However, as discussed earlier,
its carcinogenic activity can be either blocked or
potentiated in the presence of other constituents.
Such findings illustrate a major problem in apply-
ing conventional toxicological criteria to a com-
plex mixture. Other problems concern the biologi-
cal availability and metabolic significance of
particular compounds in a risk assessment unit.

In selecting reference compounds, different cri-
teria sometimes may be desirable; high octanol
partitioning may be considered where interest
focuses on fat accumulation (32,53). It is not clear
that fat accumulators are necessarily more car-
cinogenic than compounds showing lower octanol
water partitioning coefficients, but fat accumula-
tion may be very significant for food chain evalu-
ation. A reference compound may also be selected
because its solubility characteristics conserva-
tively represent a wide range of other compounds.
Dimethylnaphthalenes have been used, for exam-
ple, to represent the water-soluble fraction of
petroleum that contains toxic, volatile compounds
that are otherwise difficult to measure (50,51,67).
A reference compound might also be selected be-
cause its molecular configuration uniquely biases
metabolism towards a metabolic pathway of in-
terest, as do those strongly carcinogenic com-
pounds that form bay region diol epoxides (68).
Chemistry research continues to emphasize

compound classes based on fractionation tech-
niques. Earlier work tended toward biologically
arbitrary classification (69), but recent studies in
which fractionation classes are guided by muta-
genesis testing appear to be a promising develop-
ment (64,70,71). N-Containing basic fractions
seem to be particularly important in regard to
mutagenesis for products from the new synfuels
technologies.

There are other noxious properties to be consid-
ered besides the carcinogenic potential; e.g.,
chemical avoidance (72), acute or chronic toxicity
ofcompounds that may effect food base organisms
(5,73) and tainting of foodstuffs by compounds
causing off-flavors (74). Clearly, the criteria to be
considered in selecting reference compounds are
multiple. No current consensus exists on how best
to go about making that selection.

Metabolism
Of the POM taken up by most higher orga-

nisms, one-halfor more partitions into their lipid
constituents, and the smaller fraction enters their
metabolic pool (Fig. 7). Long-term material may
be recalled from lipid storage and metabolized.
The PAH compounds, the biphenyls, and the het-
erocyclic analogs of PAH are to some extent me-
tabolized by all forms of life, since the basic
enzyme systems necessary to metabolize these
compounds have been found in microbial popula-
tions, plants, insects, fish and mammals (76,77).
The MFO system, on which the first phase of
metabolism depends, is also inducible in mamma-
lian (16), microbial (17) and fish species (78,79).
Inducibility enables some aquatic ecosystems to
adapt to chronic exposure to petroleum, and to
adapt without selective loss oforganisms from the

UNEXTRACTABLE (FAT POOL) 64% 53%

PARENT & KETONE IRETAINED) 27%1 12%

INTERMEDIATE COMAPOUNDSIMETAOLC POOL 1% m 23%

HYDROXY & OTHER POLAR IEXCRETABLE) 8% [] 12%

FIGUREF 7. Relative distribution of metabolites for two PAH
compounds. Fluorene is more readily metabolized than
anthracene, with a comparatively larger proportion of ex-
cretable, polar metabolites and a lower proportion ofunex-
tractable compound (presumably parent compound sorbed
into fat). Metabolites are listed in order of increasing
polarity on thin layer chromatographs. Based on Lu et al.
(75).
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system (49,80). There is also some degree of sub-
strate specificity as to the MFO induced, judging
from petroleum experiments with fish (81); how-
ever, the range of specificities does not seem to
have been delineated for any MFO system studied
to date. Conjugation reactions, in the second
phase ofmetabolism, are also common to most life
forms. Reflecting their evolutionary linkage,
higher plants, animals and microorganisms gen-
erally metabolize PAH by similar pathways, and
interphyletic differences are thought to be more
closely related to differences in organ circulation,
metabolic efficiency, excretory efficiency, or pre-
dominant sites of metabolism (77).
Unlike radiological dose, degree of mutagenic-

ity or carcinogenicity may not linearly correlate
with the extent of accumulation of an organic
hydrocarbon. Some compounds may accumulate
in tissues passively with little or no injury poten-
tial. For a hydrocarbon to be mutagenic, it must
be partially metabolizable, or at least be able to
enter transport pathways and block normal enzy-
matic processes. Particularly in the case of ring-
type structures, the possibility exists that conver-
sion products of metabolism may be more
hazardous than the parent compound. This has
been shown, e.g., for genotoxicity in fish, al-
though the compounds in waste oil were not iden-
tified (2). If toxic metabolites are produced, they
warrant systematic evaluation as to their fate in
the organism and likelihood of passage up a food
chain.

Metabolic pathways include oxidation, reduc-
tion, hydrolysis, conjugation, acylation, alkyla-
tion, and ring cleavage. Unfortunately, however,
the range of reactions and compounds of interest
is so diverse that in many instances little infor-
mation is available on the relative importance of
particular pathways for a given compound and
organism. Thus it is difficult to predict the pre-
dominant metabolites and their toxicities in rela-
tion to the parent compound. Most of our knowl-
edge about the metabolism of the more complex
organic compounds comes from laboratory studies
on microorganisms (16,18). Very little has been
done with controlled ecosystem enclosures and
higher life forms. Efficiency of metabolism of
branched versus straight-chain alkanes and of
substituted versus simpler aromatics probably
explains the "biological fractionation" of oils
sometimes reported (52).
For illustrative purposes it is useful to compare

compounds at two extremes of the spectrum: (1)
PAH of low MW, like naphthalene, which are
metabolized significantly and not appreciably
bioconcentrated, and (2) compounds like the chlo-

rinated-biphenyls, which are only slightly metab-
olized, bioconcentrated, and biomagnified in food
chains. In general, chlorination severely reduces
the metabolizability of most organic compounds,
including simple rings, heterocycles and PAH, as
compared to the nonchlorinated analogs (28). The
increased fat accumulation more or less correla-
tes to degree of chlorination (33). This approach to
the question of metabolizability may have predic-
tive value, but it cannot be considered without
close evaluation of the environmental behavior of
metabolic products.

Polychlorinated Biphenyls (PCBs)
PCBs accumulate in fatty tissue of aquatic ani-

mals directly from water (82) and in the fatty
tissue of other animals by ingestion of contami-
nated foodstuffs (83). While accumulation occurs,
these compounds are not appreciably metabo-
lized. Mono-, di- and trichlorobiphenyls are me-
tabolized to phenolic compounds, as are tetrach-
loro derivatives, but more than four chlorinated
positions on the molecule blocks metabolism in
most microbes and all higher life forms (28). In
mammals, a phenolic metabolite four or five
times more toxic than the parent tetrachloro-
biphenyl has been reported (84). In a natural
assemblage of microbes, the selective biodegrada-
tion of monochloro compounds proceeded, while
dichloro compounds also present in the commer-
cial mixture were relatively enriched (85). Thus,
congeners ofhigher chlorination degree will accu-
mulate in sediments with possibly an enhanced
likelihood of adverse metabolites being formed (if
they are at all metabolized).
As regards the metabolically active portion,

fish, birds and mammals, in that order, are in-
creasingly able to convert biphenyls via the
mixed function oxidase (MFO) enzyme system in
liver (28). Aerobic bacteria are also capable of
metabolizing PCB, but they do not do so apprecia-
bly in presence of other carbon sources; and,
anaerobic bacteria do not degrade PCBs (86).
Among vegetable crops, metabolism is minimal.
In carrots about 97% ofthe PCB is on the peel and
evidently not metabolized, except for a trivial
fraction (44); this seems to be true of other leafy
crops (87).

Polychlorinated Dibenzofurans
(PCDF)

These compounds occur as impurities in com-
mercial PCBs. They are structurally similar to
the dioxins and were detected in the Pacific
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Northwest's Puget Sound in a special study by
NOAA (28). Practically no metabolic data are
available for PCDF, but they are considered not to
be metabolized to any appreciable extent (28).
Potentially, they should biomagnify through food
chains, by solubilization in fat deposits like the
PCBs. Little is known about the toxicity of these
compounds, and work should be undertaken to
delineate their toxicities in relation to other
known carcinogens. The structurally similar
chlorinated dioxins, for example, are among the
most toxic substances known, are fat accumula-
tors and are not generally degradable micro-
bially. Nonchlorinated compounds of this type
which occur as by-products of coal conversion are
oxygen heterocycles structurally similar to diben-
zothiophene or carbazole (75). Whether they are
more or less toxic than PCDF also is not known.

Polycyclic Aromatic Hydrocarbons
(PAH)

These fairly intensively studied compounds
constitute a very diverse class (1). Intermediary
products of their metabolism may be more toxic
than the parent compound. This happens because
the hydroxylated products are more water soluble
(15) and, for some ofthe PAH compounds, the diol
epoxides formed in the normal course of metabo-
lism will be uniquely carcinogenic because of
their affinity for binding to nucleic acids
(68,88,89). Biota generally metabolize PAH in
two stages. The first stage, in which potentially
the most mutagenic compounds are produced, in-
volves conversion to phenolic and other hydroxyl-
ated forms via the MFO enzyme system discussed
earlier. The second stage of metabolism involves
conjugation of the oxidation products to amino
acids, glutathione or glucuronides in animals-
all of which are highly soluble and usually ex-
creted.
Metabolism of PAH to the more water soluble

catabolites is evidently rapid enough to preclude
any appreciable bioconcentration of the parent
compound, judging from data on fish (15). For
example, the higher metabolic rate for fluorene
compared to anthracene leads to a reduced parent
compound level in fish tissues and a higher con-
tent of polar metabolites (Fig. 7). When metabo-
lism was inhibited by MFO inhibitor, PAH con-
tent in fat and as extractable parent compound
was nearly quadrupled (76). Normal metabolism
does not preclude the formation of certain meta-
bolic conversion products which have been shown
to accumulate in fish and crustaceans and to be
retained longer after animals are removed from

exposure to the parent compound (4,90-93). In-
deed, a nonconjugated catabolite of benzo(a)py-
rene metabolism has been thought to explain
higher muscle retention of catabolite than parent
compound in fish (94). Inhibition of the MFO
enzyme system by piperonyl butoxide has been
shown to increase retention of the parent com-
pound and to reduce output of the metabolites in
several organisms in an isolated ecosystem (76).
It cannot be ascertained readily whether the in-
creased accumulation of parent compounds re-
tained in fatty tissue of the organisms pose a
greater or lesser potential hazard in a food chain.

Heterocyclic Analogs ofPAH
These polycyclic compounds are represented by

benzothiophene, benzofuran, and acridine and
other azaarenes. They are compounds in which an
S, 0 or N atom occupies a position in one ring.
Comparative data on the metabolism of heterocy-
cles do not seem to be generally available (1),
except for one study (75). In that study, a greater
polarity ofoxygen, nitrogen, and sulfur analogs of
anthracene led to lower octanol partitioning. All
compounds were thus bioconcentrated, and the
metabolized fraction was very small. Among the
metabolites produced, hydroxy and keto products
were derived from anthracene and fluorene.
N-Acetylated and N-methylated products were
derived from the azaarene, carbazole. Sulfoxides
and sulfones were derived from diben-
zothiophene. Only the ketones were persistent,
and indeed anthrone was more persistent than its
parent anthracene, in the work cited. The other
compounds dissipated rapidly.

Field studies suggest that the sulfur heterocy-
cles (PASH) persist, in isopod tissues, along with
their alkylated metabolites, at higher levels than
the other PAH following an oil spill (95-98). One
infers that sulfur-containing products in the ke-
tone metabolic pathways did not further degrade
in these field experiments; the differences are not
simply explainable on the basis of bioconcentra-
tion.

In the case of an oxygen heterocycle, dibenzo-
furan, its octanol partitioning is low; it is biocon-
centrated and only a small portion is metabolized
(75). These workers also found that about 14% of
the extractable dibenzofuran was metabolized to
products substantially more polar. Presumably
these products represented ring-hydroxylated
compounds.
The azaarenes are thought to be metabolized

like their PAH analogs, but, except for the study
discussed above (75), comparative compound me-
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tabolism data seem scarce. Acridines arifd quino-
lines show a substantially lower bioconcentration
factor (BCF) in an exposure situation than they
do when their BCFs are predicted from octanol
partitioning data, and these facts are indicative
of the metabolism of more polar compounds (55).
Benzacridine metabolites (14C, not otherwise
identified) were retained in fish tissues and built
up to levels well in excess ofthe parent benzo(a)a-
cridine concentration (57). This happened despite
the fact that the metabolites were converted to
more polar forms than the benzacridine, and de-
spite the expectation that these more polar forms
would be readily excreted.
Of great importance in risk assessment are the

recent findings that N-containing polycyclic aro-
matic hydrocarbons are highly mutagenic,
whether azaarenes or amino-PAH.

Amino-PAH
These anilinelike compounds include amino-

pyrenes, aminofluorenes, and aminophenan-
threnes. Among the PAH, relative carcinogenic-
ity and mutagenicity had been fairly well
established comparing single compounds, and
showing that benzo-ring compounds, like benzan-
thracene, methylcholanthrene, and dibenzo-
pyrene, were more potent compared to the sim-
pler PAH (4). The recently studied basic
compounds, like the azaarene class, have been
added to the list of still more potent mutagens
(71). Evidence is now accumulating that muta-
genic activity may reside primarily with the
amino derivatives ofN-PAC (7,63,64,98). Of con-
siderable interest is the observation that N-PAC
having three or four aromatic rings are generally
more active mutagens than compounds having a
lesser or greater number of rings (71). N-PAC are
significantly higher in coal conversion liquids
than in petroleum.

Other Compounds
Chlorinated compounds resulting from indus-

trial processes, rather than energy processes,
have been reviewed elsewhere (28). These include
DDT metabolites, butadienes, ethylenes, phthalic
acid esters and several heavy metals contaminat-
ing Puget Sound waterways.
The metabolism of the paraffinic hydrocarbons,

hexadecane, heptadecane and dotriacontane was
compared with metabolism of five PAH in blue
crabs (90). All of the hydrocarbons used in the
study were metabolized at similar rates. The me-
tabolites were mainly mono- and dihydroxy com-
pounds and their conjugates, and the PAH in-

cluded naphthalene, methylnaphthalene,
fluorene, benzopyrene and methylcholanthrene.

Special Features of Metabolism
The important and very problematic feature of

blocking of the mutagenic action of specific com-
pounds in the presence of a complex mixture is a
special feature of metabolism and may vary with
classes of organisms. Mutagenicity remains a
paramount consideration for indirect exposure of
people to hydrocarbons through food chains, and
PAH have been high on the list ofthese hydrocar-
bons. However, for petroleum sources, it seems
unlikely that the particular distribution of PAH
in petroleum is hazardous. Neoplasia in aquatic
organisms has not been detectable at any envi-
ronmentally realistic concentration of petroleum
PAH, e.g., 1-50 ppb (4), and organisms living in
petroleum-laden waters show significant enzy-
matic and ecosystem adaptations such that petro-
leum compounds are metabolized as carbon
sources without evident ill effect (99-101). For
nonpetroleum sources this situation may differ in
important details. In coal liquids, the distribution
ofPAH is different; sulfur and nitrogen heterocy-
cles are comparatively enriched; and entirely new
classes of compounds, like the amino-PAH, have
been identified as significant contributors to mu-
tagenic activity (7). For exposure to used crank-
case oil, toxic products of metabolism were dem-
onstrated that evidently did not exist prior to
MFO induction (2).
Organisms lower on the phylogenetic scale may

emphasize different metabolic pathways in me-
tabolizing PAH. While there do not seem to be
substantive interphyletic differences among
aquatic organisms (4) or other organisms (77),
there are a few indications of different trends,
which may not be phylum specific. Sea urchins,
for example, seem to metabolize an alkyl-substi-
tuted naphthalene primarily through aromatic
ring oxidations to arylsulfates (102) rather than
by ring cleavage to diol expoxides, as predomi-
nates in fish (15). In algae, sorption predominates
over metabolism (102,103). Invertebrates show
rather irregular responses to MFO induction (81)
and in crustaceans, the second-phase enzyme sys-
tems seem to be deficient for conjugating ring by-
products. Thus, dihydrodiols and phenols are
likely to be principal metabolites, rather than
glutathione conjugates or mercapturic acids as in
finfish. In mosquito larvae (Culex), snails
(Physa), and the saltmarsh caterpillar (Es-
tigmene), metabolic degradation of benzopyrene
was less efficient than for fish (Gambusia) (76).
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Efficiency was determined from data before and
after metabolic initiation by using the MFO in-
hibitor, piperonyl butoxide. In the comparative
study of the metabolism of five anthracene ana-
logs (75), fish converted a far larger amount ofthe
metabolically active fraction of each analog than
did algae, snail or insect. Most of the material
was retained in fat stores and not metabolized.

Zooplankters, like daphnids and copepods, evi-
dently metabolize PAH, but their high lipid con-
tent leads to biconcentration of parent compound
that almost wholly obscures residual metabolites
(104,105). Residuals typically amounted to 6% or
less.

Microbial populations show a wide range of
differences in metabolism. Tb the extent microbial
activity is thought to, or known to, influence food
chain transmission of organic contaminants, dis-
cussion will be found below. An important review
on metabolism of aromatic hydrocarbons by mi-
crobial organisms is also available (106). The
information clearly shows that bacteria, fungi
and algae have the enzymatic capacity to metabo-
lize aromatic substrates ranging in size from ben-
zene to benzo(a)pyrene. Fungi, in particular, un-
dergo some metabolic reactions similar to those
reported for mammalian enzyme systems, and
they can produce metabolites known to be muta-
genic, carcinogenic or acutely toxic to experimen-
tal animals. Whether these reactions occur under
conditions similar to those encountered in nature
is not known.

Critical Pathways
Key steps in the critical pathways whereby

foodstuffbecomes contaminated are: soil to plant,
air to plant, and sediment to biota. Modeling
exercises would pyramid several of these and
other computational steps, e.g., from soil to plant
to herbivore to people (10). I will cover only key
transfer steps because the information available
on overall pathways is fragmentary at best, and
the modeling approach necessary to deal with
metabolites is as yet undecided.

Soil to Plant
Some microorganisms can degrade certain aro-

matic hydrocarbons (AH) to C02 and water; oth-
ers may only partially metabolize specific AH
and/or require additional carbon sources
(107,108). Since many of the micro-organisms are
ubiquitous, their presence can be expected in soil
systems as well as sediment systems. The relative
numbers of specific organisms in a soil sample

may also depend on substrate composition and
time allowed for them to grow in (26, 27, 109).
Simpler aromatic compounds like benzoic acid
evidently can be metabolized as a sole carbon
source, but it is thought that the more complex
compounds will require concerted action of sev-
eral bacteria that partially degrade the parent
compound by a variety of metabolic pathways
(17,27, 110).
Plant uptake will undoubtedly vary as a com-

plex resultant of microbial processes, release rate
ofthe hydrocarbon, and plant transfer and metab-
olism. One can therefore expect substantive dif-
ferences in uptake depending on soil and expo-
sure conditions, as well as plant species. Among
the few data available, carrots, spinach and let-
tuce were grown in soils contaminated with 3,4-
benzopyrene at 100 ppb levels (111). Differences
ofPAH incorporation into the plants were tenfold,
depending on the plant part, and uptake was not
correlated with soil concentrations of benzo-
pyrene. PCBs, by comparison, were found not to
be taken up by root systems (38). In the PAH
study cited, it is not clear what the metabolic
products were, but another study using soybeans
showed that anthracene first sorbed to soil was
taken up, translocated and catabolized to lower
MW products (112).

Currently, soil studies on the behavior of syn-
fuels residuals are focusing on the fate of phenols
and anilines, (6). These simpler ring compounds
should be representative of how metabolites of
the higher ring number PAH will be handled in
soil systems. Alfisol soils, for example, retard the
movement of organic nitrogen bases (anilines)
while phenols remain relatively mobile (113,114).
Thus, phenols are likely the first compounds to
affect water quality. In contrast, the primary en-
vironmental impact of the anilines may result
from plant uptake and subsequent food chain
incorporation. Of the fraction that enters the
plant, a portion of phenols or the anilines is
metabolized. Using 14C-labeled phenols, 80% or
more of the 14C associated with root solubles was
metabolized to higher MW fractions; by contrast,
using 14C-aniline less than 40% of root solubles
was metabolized to higher MW compounds, and
the remainder persisted in tissues as parent ani-
line and possibly closely related compounds (113).

Air to Plant
Radiological experience shows that particu-

lates of 1 gm AMAD provide the largest pathway
whereby green plants take up airborne radioele-
ments, and such contaminants are tenaciously
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held by the plant leaf (20). This is not true of
particles as large as 100 gm. Most PAH are sorbed
to fine atmospheric particulates (1 gm). Recently
mutagenically active hydrocarbons were found
sorbed to urban air particles and absorbed to a
disproportionately high degree in size class < 1.7
gm compared to size class <20 gim (39). Distance-
dependent decreases in PAH sorbed to vegetable
leaves were demonstrated in vicinity of a smelter
(115) and near a highway (116). PAH are con-
verted to more mutagenic nitroderivatives in the
presence of atmospheric NO2; the reaction is evi-
dently catalyzed by sorption onto the airborne
particulates (41,42).
Because they may stabilize organic pollutants

against decomposition, and because of their sorp-
tion surface area and charge characteristics, air-
borne particles would seem to be a much more
important vehicle for exposure of either plants or
animals, as compared to gaseous contaminants
(9,19). In the highway and smelter studies cited
above there were also suggestions that low MW
PAH might be more efficiently sorbed than high
MW PAH. These inferences might well have been
confounded by a particle size/sorption variable
because, as is common with most monitoring
studies, provision was not made for aerosol parti-
cle sizing at the sampling sites.
PCBs are thought to be taken up by plant

leaves after volatilization from the soil surface,
and they are not absorbed through the roots (38).
In a field situation, or even certain growth cham-
ber situations, wind resuspension of surface soil
particulates cannot usually be ruled out for obser-
vations of this sort (117). Differences in how vari-
ous plants handle foliar PCB; vary by two orders
of magnitude (118). By comparison. 14C-anthra-
cene, administered by volatilization to soybean
plants, was absorbed through the leaves and me-
tabolized to lowerMW products (112), as would be
expected.

Sediment to Biota
This link in food chains to people is important

simply because many complex organic compounds
(and metals) are ultimately deposited in estua-
rine and other aquatic sediments. Re-entrain-
ment takes place via microbial conversion, up-
take from the interstitial water of sediments and
ingestion of bottom particulates by some orga-
nisms used as food. In aerobic sediments, as in
soils, the complete conversion of complex hydro-
carbons to C02 and water is known to require a
suite of organisms and a period of adaptive grow-
in of populations not initially present in great

number. During an interval of time, which may
vary appreciably with temperature and other
field conditions, microbial conversion is likely to
be incomplete, and a wide variety of intermediate
metabolites may be produced (109). Further re-
search will be needed to delineate metabolites
and conditions that might be important for food
chain uptake.
Only recently has information been available

on the distribution of sedimentary compounds
that find their way into organisms directly living
in the sediments. For example, a detritus feeding
clam, Macoma inquinata, and a burrowing poly-
chaete, Abarenicola pacifica, both entrained sev-
eral times the sediment concentration of three
PAH over a sixty day exposure (119). The three
PAH were freed from impurities by silica gel
chromatography before being sorbed to clean sed-
iments. Tissue-bound forms of the PAH that were
solvent-insoluble were considered not to be par-
ent PAH. They amounted to 1% and 9% for chry-
sene and benzo(a)pyrene, respectively, and 22%
for phenanthrene. It would be useful from a mo-
deling perspective to know whether such bound
forms of PAH consisted of insoluble metabolites
or rather represented parent compound that had
partitioned into lipid constituents. Evidently the
clam was a temporary reservoir, at least, for PAH
transfer to people. The polychaete would be of less
concern, since an aquatic carnivore with hydro-
carbon degrading capabilities would intervene in
the food chain. Generally, it would seem, the
principal pathway for uptake from the sediment
will be via interstitial water to the filter feeder,
and not directly from the sediment particle
(120,121).

In subsequent work on New York Bight, fluo-
ranthene, pyrene and other PAH of high MW
found in the digestive gland of lobster, sharply
contrasted with the predominantly lower MW
compounds like napthalenes and biphenyls found
in the liver of flatfish (122). The author consid-
ered that these differences reflected primarily
habitat and feeding habits of the lobster, not
differences in its metabolism compared to fish.
Attention also was called to the human health
hazard from high PAH content in lobster diges-
tive gland, which is used as food.

Volatilization from spill-contaminated sedi-
ments has been thought to be a factor reducing
the likelihood of reentrainment of hydrocarbons
from sediment to biota (123,124). Later studies, in
which Henry's Law coefficients were determined
for two- three- and four-ring PAH, suggest that
volatilization cannot significantly reduce the se-
dimentary concentrations of the more carcino-
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genic three- and four-ring compounds (125).
Naphthalenes and PCBs, on the other hand, may
be substantially reduced in aquatic sediments by
volatilization (28,125).

Future Direction
Research on the biologically active components

of petroleum, synthetic fuel oils, and other or-
ganic products are now providing valuable ge-
neric information needed to predict the long term
fate of buried waste organic constituents and the
likelihood of residual chemicals entering food
chains. Now that examples have become avail-
able of compound classes for which metabolites
may be of greater concern than the parent com-
pound, need exists to better characterize the sub-
sequent behavior of key metabolites, as for exam-
ple, anthrone and other ketones from PAH
metabolism. The behavior of these metabolites
also must be determined in plants, herbivores
and other food chain organisms. In addition, the
specific feeding habits and living habits of specific
organisms in a food chain must be documented,
because such animal behavior can bias the physi-
ological chemistry affecting certain compounds.
Most complex mixtures, like petroleum, coal

liquids and shale oil, show several unique proper-
ties unlike those exhibited by simple solutes. Of
first importance is the demonstrated potentia-
tion, as well as blocking, of mutagenic activity of
specific compounds by other fractions in a com-
plex mixture of ring-type compounds. There is
clear need to characterize and better delineate
the specific compounds responsible for both block-
ing and synergism. Biologically meaningful crite-
ria should also be developed for supplanting the
presently inadequate reference compound lists
proposed for study of complex mixtures.
Because of complexity of these environmental

processes, models are needed to ascertain data
base needs, but current model designs are of lim-
ited usefulness and are misleading. For example,
one cannot confidently predict biological risk
based simply on accumulation criteria; e.g.,
either measured, or estimated from octanol/water
partitioning. In developing a new modelling ap-
proach, attention must be paid to gradient sys-
tems, which are nonsteady-state, and means need
to be devised for handling the movement of those
metabolites likely to be more hazardous than the
parent compound. Since compound classes differ
markedly in soil persistence, metabolizability,
and tissue retention following depuration, by-
products of a compound may conceivably become
more toxic to organisms over time as a result of

the nature and magnitude of intervening proc-
esses. Understanding the processes holds the key
to the credibility of predicting health hazards
from indirect exposures to organic chemicals.
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